
This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Isobaric Vapour-Liquid Equilibria in the Allyl Alcohol 1,2-Dichloro-Ethane System

R. Vijaya Kumar^a; M. Anand Rao^a; M. Venkateshwara Rao^b; Y. V. L. Ravi Kumar^c; D. H. L. Prasad^c ^a Department of Chemistry, Osmania University, Hyderabad, India ^b College of Technology, Osmania University, Hyderabad, India ^c Indian Institute of Chemical Technology, Hyderabad, India

To cite this Article Kumar, R. Vijaya , Rao, M. Anand , Rao, M. Venkateshwara , Kumar, Y. V. L. Ravi and Prasad, D. H. L.(1996) 'Isobaric Vapour-Liquid Equilibria in the Allyl Alcohol 1,2-Dichloro-Ethane System', Physics and Chemistry of Liquids, 32: 3, 177 – 181

To link to this Article: DOI: 10.1080/00319109608030720 URL: http://dx.doi.org/10.1080/00319109608030720

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1996, Vol. 32, pp. 177–181 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

ISOBARIC VAPOUR-LIQUID EQUILIBRIA IN THE ALLYL ALCOHOL + 1,2-DICHLORO-ETHANE SYSTEM

R. VIJAYA KUMAR¹, M. ANAND RAO¹, M. VENKATESHWARA RAO², Y. V. L. RAVI KUMAR³ and D. H. L. PRASAD^{3,*}

¹Department of Chemistry, Osmania University ²College of Technology, Osmania University ³Indian Institute of Chemical Technology, Hyderabad-500 007, India

(Received 31 January 1996)

Isobaric VLE are measured at 200, 500 and 705 mm Hg at ten compositions spread evenly, over the entire liquid mole fraction range, emplying a Swietoslawski-type ebulliometer. The t-x data collected are found to be well represented by the Wilson model.

KEY WORDS: Vapour-liquid equilibrium, t-x relations, boiling point, allyl alcohol, 1,2-dichloroethane.

INTRODUCTION

In continuation of the investigators interest in the phase equilibria of binary mixtures with an alcohol as one component and a chloroethane as the other¹⁻³, this study on the vapour-liquid equilibria of allyl alcohol + 1,2-dichloroethane mixtures has been taken up. There is no published information on the phase equilibria of this system. The bubble temperature (t)-composition (x) relations have been measured at 200, 500 and 705 mm Hg, to study the effect of pressure, on the phase equilibrium.

EXPERIMENTAL

A Swietoslawski type ebulliometer, very similar to the one describer by Hala *et al.*⁴ is used. Connection of the ebulliometer to a good vacuum system through a mercury manometer, in line facilitated the creation and maintenance of the chosen pressures within $\pm 1 \text{ mm Hg}$. The equilibrium temperatures are measured to an accuracy of $\pm 0.1^{\circ}$ C, by means of a carefully calibrated mercury-in-glass thermometer. The

^{*}Author for correspondence.

mixtures are prepared gravimetrically and placed in the ebulliometer. The heating rate is adjusted to yield the desired condensate drop-rate of about 30 per minute, as suggested by Hala *et al.*⁴ The equilibrium temperature is measured after maintaining the steady drop-rate for sufficient length of time (at least 30 minutes) and the thermometer showed no change in temperature, for at least 15 minutes.

MATERIALS

Allyl alcohol (2-Propen-1-ol) of AR grade procured from SD Fine-Chem. Ltd., Boisar (India), has been distilled twice and the middle fraction of the second distilation is collected for use in the experiments.

1,2-Dichloroethane of AR grade procured from BDH, Bombay (India), is further purified by washing with dilute potasium hydroxide solution and water, dried over phosphorous pentoxide and fractionally distilled twice. The middle fraction of the second distillation is collected for use in the experiments.

A packed column of length equal to 30 theoretical plates is employed for the purification of both substances. Based on the comparison of the physical properties with lilerature^{5,6} data, presented in Table 1, the substances are expected to be at least 99.8% pure.

RESULTS AND DISCUSSION

The experimental t-x measurements are correlated using the Wilson equation⁷ in the form.

$$\ln \gamma_1 = -\ln \left[x_1 + \Lambda_{12} x_2 \right] + x_2 \left[\frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21} x_1} \right]$$
(1)

$$\ln \gamma_2 = -\ln \left[x_2 + \Lambda_{12} x_1 \right] + x_1 \left[\frac{\Lambda_{21}}{x_2 + \Lambda_{21} x_1} - \frac{\Lambda_{12}}{x_1 + \Lambda_{12} x_2} \right]$$
(2)

where

$$\Lambda_{12} = \frac{V_2^L}{V_1^L} \exp\left[-\left[(\lambda_{12} - \lambda_{11})/RT\right]\right]$$
(3)

 Table 1 Physical Properties of Pure Liquids at 293.15 K.

Substance	Density (g·ml ⁻¹)	Refractive Index	Reference
Allyl alcohol	0.8523	1.4132	This work
-	0.8520	1.4130	5
1,2-Dichloroethane	1.2531	1.4450	This work
	1.2529	1.4451	6

 Table 2
 Antoine constants of the pure liquids used in this work.

 Class
 Class

Substance	A	В	С	
Allyl alcohol	7.34110	1271.47	188.00	
1, 2-Dichloroethane	7.15866	1341.37	230.05	

and

$$\Lambda_{21} = \frac{V_1^L}{V_2^L} \exp\left[-\left[(\lambda_{12} - \lambda_{22})/RT\right]\right]$$
(4)

 V_1^L and V_2^L are liquid molal volumes and $(\lambda_{12} - \lambda_{11})$ and $(\lambda_{12} - \lambda_{22})$ are the Wilson parameters. λ 's are the energies of interaction between the molecules designated by the subscripts. The optimum Wilson parameters $[(\lambda_{12} - \lambda_{11})/R]$ and $[(\lambda_{12} - \lambda_{22})/R]$ are obtained by minimizing the objective function ϕ defined as:

$$\phi = \sum \left[(P_{\text{cal}} / P_{\text{expt}}) - 1 \right]^2 \tag{5}$$

Nelder-Mead optimization technique described in Kuester and Mize⁸ is used. Vapour pressures required in the computations are calculated from the Antoine constant given by Dean⁹ and reproduced in Table 2 for ready reference. Liquid molal volumes are calculated from Yen and Woods correlation¹⁰. The values of the optimum Wilson parameters are also noted along with the detailed information on the observed bubble point temperature (t), mole fraction of allyl alcohol in the liquid phase (x_1) and the calculated values of: the mole fraction of allyl alcohol in the vapour phase (y_1), the liquid phase activity coefficients (γ_1 and γ_2), and the excess Gibbs free energy (G^E) in the Table 3. The prospect of formation of azeotropic mixtures at different pressure as shown in Table 4 is predicted based on the model. Experimental investigations confirmed the formation of azeotropes, under the conditions noted in the table. The data and the representation presented in the paper are therefore expected to be reliable within the stated limits of experimental errors.

Table 3 Vapour-Liquid Equilibrium of Allyl alcohol (1) + 1, 2-Dichloroethane (2) system. **Wilson Parameters**: $(\lambda_{12} - \lambda_{11})/R = 366.57^{\circ}$ K; $(\lambda_{12} - \lambda_{22})/R = 132.79^{\circ}$ K. Standard Deviation in temperature = 0.5°K.

t(°C)	x_i	У1	γ_1	γ_2	$G^{E}(J \cdot mol^{-1})$
		Total Pr	essure: 20	0 mm Hg	
46.1	0.0000	0.0000	4.1864	1.0000	0
45.1	0.0879	0.1042	3.0499	1.0144	240
44.6	0.1823	0.1649	2.3325	1.0574	528
45.3	0.2599	0.1989	1.9521	1.1119	668
45.6	0.3703	0.2374	1.5933	1.2198	789
46.6	0.4642	0.2681	1.3905	1.3435	827

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	795 699 555 301 131 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	699 555 301 131
51.3 0.7831 0.4404 1.0542 2.1012 56.0 0.8953 0.6071 1.0124 2.5710 60.0 0.9574 0.7891 1.0020 2.8987 64.3 1.0000 1.0000 3.1529 Total Pressure: 500 mm Hg 70.7 0.0000 0.0000 3.7944 1.0000 68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	555 301 131
56.0 0.8953 0.6071 1.0124 2.5710 60.0 0.9574 0.7891 1.0020 2.8987 64.3 1.0000 1.0000 3.1529 Total Pressure: 500 mm Hg 70.7 0.0000 0.0000 3.7944 1.0000 68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	301 131
60.0 0.9574 0.7891 1.0020 2.8987 64.3 1.0000 1.0000 3.1529 Total Pressure: 500 mm Hg 70.7 0.0000 0.0000 3.7944 1.0000 68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	131
64.3 1.0000 1.0000 1.0000 3.1529 Total Pressure: 500 mm Hg 70.7 0.0000 0.0000 3.7944 1.0000 68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	
Total Pressure: 500 mm Hg 70.7 0.0000 0.0000 3.7944 1.0000 68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
68.8 0.0879 0.1249 2.8565 1.0131 67.9 0.1823 0.1983 2.2314 1.0528 69.4 0.2599 0.2395 1.8892 1.1036 69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	
67.90.18230.19832.23141.052869.40.25990.23951.88921.103669.30.37030.28591.55931.204870.30.46420.32211.36981.321170.30.57970.37111.20961.511371.30.68400.42871.11261.741174.40.78310.50921.05142.0278	0
69.40.25990.23951.88921.103669.30.37030.28591.55931.204870.30.46420.32211.36981.321170.30.57970.37111.20961.511371.30.68400.42871.11261.741174.40.78310.50921.05142.0278	296
69.3 0.3703 0.2859 1.5593 1.2048 70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	535
70.3 0.4642 0.3221 1.3698 1.3211 70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	679
70.3 0.5797 0.3711 1.2096 1.5113 71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	802
71.3 0.6840 0.4287 1.1126 1.7411 74.4 0.7831 0.5092 1.0514 2.0278	843
74.4 0.7831 0.5092 1.0514 2.0278	811
	711
78.9 0.8953 0.6700 1.0117 2.4604	556
	305
82.5 0.9574 0.8299 1.0019 2.7607	133
85.9 1.0000 1.0000 1.0000 2.9939	0
Total Pressure: 705 mm Hg	
81.2 0.0000 0.0000 3.6548 1.0000	0
79.1 0.0879 0.1324 2.7550 1.0126	294
78.6 0.1823 0.2105 2.1932 1.0510	538
78.7 0.2599 0.2544 1.8650 1.1004	681
79.6 0.3703 0.3037 1.5460 1.1991	808
79.2 0.4642 0.3420 1.3617 1.3125	846
80.4 0.5797 0.3931 1.2052 1.4979	817
81.8 0.6840 0.4522 1.1103 2.0000	564
86.5 0.8953 0.6911 1.0115 2.4184	311
91.7 0.9573 0.8429 1.0019 2.7082	146
95.1 1.0000 1.0000 1.0000 2.9332	0

 Table 3 (Continued)

Table 4 Azeotropic conditions.

Pressure (mm Hg)	Temperature (°C)	Mole fraction of Allyl alcohol
200	45.5	0.1350
500	67.8	0.2050
705	78.6	0.2450

Acknowledgement

The authors are grateful to Dr. A. Rajiah for his valuable suggestions and encouragement.

References

1. Ch. Srinivas, M. Venkateshwara Rao and D. H. L. Prasad, Fluid Phase Equilibria, 69, 285-297 (1991).

- 2. V. Lakshman, M. Venkateshwara Rao and D. H. L. Prasad, Fluid Phase Equilibria, 69, 271-284 (1991).
- 3. R. Kiran Kumar, M. Venkateshwara Rao and D. H. L. Prasad, Fluid Phase Equilibria, 70, 19-32 (1991).
- 4. E. Hala, J. Pick, V. Fried and O. Villim, Vapour Liquid Equilibrium, Pergamon, London (1958).
- Mary Howe Grant, Ed., Kirk-Othner Encyclopedia of Chemical Technology, 4th ed., Vol. 2, p. 145 (1992).
 Mary Howe Grant, Ed., Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 6, p. 14
- (1992).
- 7. G. M. Wilson, J. Am. Chem. Soc., 86, 127 (1964).
- 8. J. L. Kuester and J. H. Mize, Optimization Techniques with Fortran, Mc Graw-Hill, New York (1973).
- 9. J. A. Dean, Ed., Langes Hand Book of Chemistry, Mc Graw-Hill, New York (1979).
- 10. L. C. Yen and S. S. Woods, AIChE Journal, 12, 95 (1966).